3.11.78 \(\int \frac {1}{\sqrt {x} (a+b x^2+c x^4)^2} \, dx\) [1078]

3.11.78.1 Optimal result
3.11.78.2 Mathematica [C] (verified)
3.11.78.3 Rubi [A] (verified)
3.11.78.4 Maple [C] (verified)
3.11.78.5 Fricas [B] (verification not implemented)
3.11.78.6 Sympy [F(-1)]
3.11.78.7 Maxima [F]
3.11.78.8 Giac [F]
3.11.78.9 Mupad [B] (verification not implemented)

3.11.78.1 Optimal result

Integrand size = 20, antiderivative size = 503 \[ \int \frac {1}{\sqrt {x} \left (a+b x^2+c x^4\right )^2} \, dx=\frac {\sqrt {x} \left (b^2-2 a c+b c x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {c^{3/4} \left (3 b^2-28 a c-3 b \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{4 \sqrt [4]{2} a \left (b^2-4 a c\right )^{3/2} \left (-b-\sqrt {b^2-4 a c}\right )^{3/4}}-\frac {c^{3/4} \left (3 b^2-28 a c+3 b \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{4 \sqrt [4]{2} a \left (b^2-4 a c\right )^{3/2} \left (-b+\sqrt {b^2-4 a c}\right )^{3/4}}+\frac {c^{3/4} \left (3 b^2-28 a c-3 b \sqrt {b^2-4 a c}\right ) \text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{4 \sqrt [4]{2} a \left (b^2-4 a c\right )^{3/2} \left (-b-\sqrt {b^2-4 a c}\right )^{3/4}}-\frac {c^{3/4} \left (3 b^2-28 a c+3 b \sqrt {b^2-4 a c}\right ) \text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{4 \sqrt [4]{2} a \left (b^2-4 a c\right )^{3/2} \left (-b+\sqrt {b^2-4 a c}\right )^{3/4}} \]

output
1/8*c^(3/4)*arctan(2^(1/4)*c^(1/4)*x^(1/2)/(-b-(-4*a*c+b^2)^(1/2))^(1/4))* 
(3*b^2-28*a*c-3*b*(-4*a*c+b^2)^(1/2))*2^(3/4)/a/(-4*a*c+b^2)^(3/2)/(-b-(-4 
*a*c+b^2)^(1/2))^(3/4)+1/8*c^(3/4)*arctanh(2^(1/4)*c^(1/4)*x^(1/2)/(-b-(-4 
*a*c+b^2)^(1/2))^(1/4))*(3*b^2-28*a*c-3*b*(-4*a*c+b^2)^(1/2))*2^(3/4)/a/(- 
4*a*c+b^2)^(3/2)/(-b-(-4*a*c+b^2)^(1/2))^(3/4)-1/8*c^(3/4)*arctan(2^(1/4)* 
c^(1/4)*x^(1/2)/(-b+(-4*a*c+b^2)^(1/2))^(1/4))*(3*b^2-28*a*c+3*b*(-4*a*c+b 
^2)^(1/2))*2^(3/4)/a/(-4*a*c+b^2)^(3/2)/(-b+(-4*a*c+b^2)^(1/2))^(3/4)-1/8* 
c^(3/4)*arctanh(2^(1/4)*c^(1/4)*x^(1/2)/(-b+(-4*a*c+b^2)^(1/2))^(1/4))*(3* 
b^2-28*a*c+3*b*(-4*a*c+b^2)^(1/2))*2^(3/4)/a/(-4*a*c+b^2)^(3/2)/(-b+(-4*a* 
c+b^2)^(1/2))^(3/4)+1/2*(b*c*x^2-2*a*c+b^2)*x^(1/2)/a/(-4*a*c+b^2)/(c*x^4+ 
b*x^2+a)
 
3.11.78.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.20 (sec) , antiderivative size = 140, normalized size of antiderivative = 0.28 \[ \int \frac {1}{\sqrt {x} \left (a+b x^2+c x^4\right )^2} \, dx=-\frac {\frac {4 \sqrt {x} \left (b^2-2 a c+b c x^2\right )}{a+b x^2+c x^4}+\text {RootSum}\left [a+b \text {$\#$1}^4+c \text {$\#$1}^8\&,\frac {3 b^2 \log \left (\sqrt {x}-\text {$\#$1}\right )-14 a c \log \left (\sqrt {x}-\text {$\#$1}\right )+3 b c \log \left (\sqrt {x}-\text {$\#$1}\right ) \text {$\#$1}^4}{b \text {$\#$1}^3+2 c \text {$\#$1}^7}\&\right ]}{8 a \left (-b^2+4 a c\right )} \]

input
Integrate[1/(Sqrt[x]*(a + b*x^2 + c*x^4)^2),x]
 
output
-1/8*((4*Sqrt[x]*(b^2 - 2*a*c + b*c*x^2))/(a + b*x^2 + c*x^4) + RootSum[a 
+ b*#1^4 + c*#1^8 & , (3*b^2*Log[Sqrt[x] - #1] - 14*a*c*Log[Sqrt[x] - #1] 
+ 3*b*c*Log[Sqrt[x] - #1]*#1^4)/(b*#1^3 + 2*c*#1^7) & ])/(a*(-b^2 + 4*a*c) 
)
 
3.11.78.3 Rubi [A] (verified)

Time = 0.66 (sec) , antiderivative size = 431, normalized size of antiderivative = 0.86, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.350, Rules used = {1435, 1683, 25, 1752, 756, 218, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {x} \left (a+b x^2+c x^4\right )^2} \, dx\)

\(\Big \downarrow \) 1435

\(\displaystyle 2 \int \frac {1}{\left (c x^4+b x^2+a\right )^2}d\sqrt {x}\)

\(\Big \downarrow \) 1683

\(\displaystyle 2 \left (\frac {\sqrt {x} \left (-2 a c+b^2+b c x^2\right )}{4 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\int -\frac {3 b^2+3 c x^2 b-14 a c}{c x^4+b x^2+a}d\sqrt {x}}{4 a \left (b^2-4 a c\right )}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle 2 \left (\frac {\int \frac {3 b^2+3 c x^2 b-14 a c}{c x^4+b x^2+a}d\sqrt {x}}{4 a \left (b^2-4 a c\right )}+\frac {\sqrt {x} \left (-2 a c+b^2+b c x^2\right )}{4 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )\)

\(\Big \downarrow \) 1752

\(\displaystyle 2 \left (\frac {\frac {1}{2} c \left (\frac {3 b^2-28 a c}{\sqrt {b^2-4 a c}}+3 b\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b-\sqrt {b^2-4 a c}\right )}d\sqrt {x}-\frac {c \left (-3 b \sqrt {b^2-4 a c}-28 a c+3 b^2\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b+\sqrt {b^2-4 a c}\right )}d\sqrt {x}}{2 \sqrt {b^2-4 a c}}}{4 a \left (b^2-4 a c\right )}+\frac {\sqrt {x} \left (-2 a c+b^2+b c x^2\right )}{4 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )\)

\(\Big \downarrow \) 756

\(\displaystyle 2 \left (\frac {\frac {1}{2} c \left (\frac {3 b^2-28 a c}{\sqrt {b^2-4 a c}}+3 b\right ) \left (-\frac {\int \frac {1}{\sqrt {\sqrt {b^2-4 a c}-b}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{\sqrt {\sqrt {b^2-4 a c}-b}}-\frac {\int \frac {1}{\sqrt {2} \sqrt {c} x+\sqrt {\sqrt {b^2-4 a c}-b}}d\sqrt {x}}{\sqrt {\sqrt {b^2-4 a c}-b}}\right )-\frac {c \left (-3 b \sqrt {b^2-4 a c}-28 a c+3 b^2\right ) \left (-\frac {\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{\sqrt {-\sqrt {b^2-4 a c}-b}}-\frac {\int \frac {1}{\sqrt {2} \sqrt {c} x+\sqrt {-b-\sqrt {b^2-4 a c}}}d\sqrt {x}}{\sqrt {-\sqrt {b^2-4 a c}-b}}\right )}{2 \sqrt {b^2-4 a c}}}{4 a \left (b^2-4 a c\right )}+\frac {\sqrt {x} \left (-2 a c+b^2+b c x^2\right )}{4 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle 2 \left (\frac {\frac {1}{2} c \left (\frac {3 b^2-28 a c}{\sqrt {b^2-4 a c}}+3 b\right ) \left (-\frac {\int \frac {1}{\sqrt {\sqrt {b^2-4 a c}-b}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{\sqrt {\sqrt {b^2-4 a c}-b}}-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (\sqrt {b^2-4 a c}-b\right )^{3/4}}\right )-\frac {c \left (-3 b \sqrt {b^2-4 a c}-28 a c+3 b^2\right ) \left (-\frac {\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{\sqrt {-\sqrt {b^2-4 a c}-b}}-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (-\sqrt {b^2-4 a c}-b\right )^{3/4}}\right )}{2 \sqrt {b^2-4 a c}}}{4 a \left (b^2-4 a c\right )}+\frac {\sqrt {x} \left (-2 a c+b^2+b c x^2\right )}{4 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle 2 \left (\frac {\frac {1}{2} c \left (\frac {3 b^2-28 a c}{\sqrt {b^2-4 a c}}+3 b\right ) \left (-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (\sqrt {b^2-4 a c}-b\right )^{3/4}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (\sqrt {b^2-4 a c}-b\right )^{3/4}}\right )-\frac {c \left (-3 b \sqrt {b^2-4 a c}-28 a c+3 b^2\right ) \left (-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (-\sqrt {b^2-4 a c}-b\right )^{3/4}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (-\sqrt {b^2-4 a c}-b\right )^{3/4}}\right )}{2 \sqrt {b^2-4 a c}}}{4 a \left (b^2-4 a c\right )}+\frac {\sqrt {x} \left (-2 a c+b^2+b c x^2\right )}{4 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )\)

input
Int[1/(Sqrt[x]*(a + b*x^2 + c*x^4)^2),x]
 
output
2*((Sqrt[x]*(b^2 - 2*a*c + b*c*x^2))/(4*a*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4 
)) + (-1/2*(c*(3*b^2 - 28*a*c - 3*b*Sqrt[b^2 - 4*a*c])*(-(ArcTan[(2^(1/4)* 
c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)]/(2^(1/4)*c^(1/4)*(-b - Sq 
rt[b^2 - 4*a*c])^(3/4))) - ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^ 
2 - 4*a*c])^(1/4)]/(2^(1/4)*c^(1/4)*(-b - Sqrt[b^2 - 4*a*c])^(3/4))))/Sqrt 
[b^2 - 4*a*c] + (c*(3*b + (3*b^2 - 28*a*c)/Sqrt[b^2 - 4*a*c])*(-(ArcTan[(2 
^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)]/(2^(1/4)*c^(1/4)*( 
-b + Sqrt[b^2 - 4*a*c])^(3/4))) - ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + 
Sqrt[b^2 - 4*a*c])^(1/4)]/(2^(1/4)*c^(1/4)*(-b + Sqrt[b^2 - 4*a*c])^(3/4)) 
))/2)/(4*a*(b^2 - 4*a*c)))
 

3.11.78.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 756
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2 
]], s = Denominator[Rt[-a/b, 2]]}, Simp[r/(2*a)   Int[1/(r - s*x^2), x], x] 
 + Simp[r/(2*a)   Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ[a 
/b, 0]
 

rule 1435
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] 
:> With[{k = Denominator[m]}, Simp[k/d   Subst[Int[x^(k*(m + 1) - 1)*(a + b 
*(x^(2*k)/d^2) + c*(x^(4*k)/d^4))^p, x], x, (d*x)^(1/k)], x]] /; FreeQ[{a, 
b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && FractionQ[m] && IntegerQ[p]
 

rule 1683
Int[((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(- 
x)*(b^2 - 2*a*c + b*c*x^n)*((a + b*x^n + c*x^(2*n))^(p + 1)/(a*n*(p + 1)*(b 
^2 - 4*a*c))), x] + Simp[1/(a*n*(p + 1)*(b^2 - 4*a*c))   Int[(b^2 - 2*a*c + 
 n*(p + 1)*(b^2 - 4*a*c) + b*c*(n*(2*p + 3) + 1)*x^n)*(a + b*x^n + c*x^(2*n 
))^(p + 1), x], x] /; FreeQ[{a, b, c, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4 
*a*c, 0] && ILtQ[p, -1]
 

rule 1752
Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x 
_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q)) 
   Int[1/(b/2 - q/2 + c*x^n), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   I 
nt[1/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2 
, 2*n] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && (PosQ[b^2 
 - 4*a*c] ||  !IGtQ[n/2, 0])
 
3.11.78.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.10 (sec) , antiderivative size = 144, normalized size of antiderivative = 0.29

method result size
derivativedivides \(\frac {-\frac {b c \,x^{\frac {5}{2}}}{2 a \left (4 a c -b^{2}\right )}+\frac {\left (2 a c -b^{2}\right ) \sqrt {x}}{2 a \left (4 a c -b^{2}\right )}}{c \,x^{4}+b \,x^{2}+a}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (-3 \textit {\_R}^{4} b c +14 a c -3 b^{2}\right ) \ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}}{8 a \left (4 a c -b^{2}\right )}\) \(144\)
default \(\frac {-\frac {b c \,x^{\frac {5}{2}}}{2 a \left (4 a c -b^{2}\right )}+\frac {\left (2 a c -b^{2}\right ) \sqrt {x}}{2 a \left (4 a c -b^{2}\right )}}{c \,x^{4}+b \,x^{2}+a}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (-3 \textit {\_R}^{4} b c +14 a c -3 b^{2}\right ) \ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}}{8 a \left (4 a c -b^{2}\right )}\) \(144\)

input
int(1/x^(1/2)/(c*x^4+b*x^2+a)^2,x,method=_RETURNVERBOSE)
 
output
2*(-1/4/a*b*c/(4*a*c-b^2)*x^(5/2)+1/4*(2*a*c-b^2)/a/(4*a*c-b^2)*x^(1/2))/( 
c*x^4+b*x^2+a)+1/8/a/(4*a*c-b^2)*sum((-3*_R^4*b*c+14*a*c-3*b^2)/(2*_R^7*c+ 
_R^3*b)*ln(x^(1/2)-_R),_R=RootOf(_Z^8*c+_Z^4*b+a))
 
3.11.78.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 10274 vs. \(2 (403) = 806\).

Time = 4.42 (sec) , antiderivative size = 10274, normalized size of antiderivative = 20.43 \[ \int \frac {1}{\sqrt {x} \left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \]

input
integrate(1/x^(1/2)/(c*x^4+b*x^2+a)^2,x, algorithm="fricas")
 
output
Too large to include
 
3.11.78.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {x} \left (a+b x^2+c x^4\right )^2} \, dx=\text {Timed out} \]

input
integrate(1/x**(1/2)/(c*x**4+b*x**2+a)**2,x)
 
output
Timed out
 
3.11.78.7 Maxima [F]

\[ \int \frac {1}{\sqrt {x} \left (a+b x^2+c x^4\right )^2} \, dx=\int { \frac {1}{{\left (c x^{4} + b x^{2} + a\right )}^{2} \sqrt {x}} \,d x } \]

input
integrate(1/x^(1/2)/(c*x^4+b*x^2+a)^2,x, algorithm="maxima")
 
output
1/2*((3*b^2*c - 14*a*c^2)*x^(9/2) + (3*b^3 - 13*a*b*c)*x^(5/2) + 4*(a*b^2 
- 4*a^2*c)*sqrt(x))/(a^3*b^2 - 4*a^4*c + (a^2*b^2*c - 4*a^3*c^2)*x^4 + (a^ 
2*b^3 - 4*a^3*b*c)*x^2) - integrate(1/4*((3*b^2*c - 14*a*c^2)*x^(7/2) + (3 
*b^3 - 17*a*b*c)*x^(3/2))/(a^3*b^2 - 4*a^4*c + (a^2*b^2*c - 4*a^3*c^2)*x^4 
 + (a^2*b^3 - 4*a^3*b*c)*x^2), x)
 
3.11.78.8 Giac [F]

\[ \int \frac {1}{\sqrt {x} \left (a+b x^2+c x^4\right )^2} \, dx=\int { \frac {1}{{\left (c x^{4} + b x^{2} + a\right )}^{2} \sqrt {x}} \,d x } \]

input
integrate(1/x^(1/2)/(c*x^4+b*x^2+a)^2,x, algorithm="giac")
 
output
integrate(1/((c*x^4 + b*x^2 + a)^2*sqrt(x)), x)
 
3.11.78.9 Mupad [B] (verification not implemented)

Time = 16.07 (sec) , antiderivative size = 35171, normalized size of antiderivative = 69.92 \[ \int \frac {1}{\sqrt {x} \left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \]

input
int(1/(x^(1/2)*(a + b*x^2 + c*x^4)^2),x)
 
output
((x^(1/2)*(2*a*c - b^2))/(2*a*(4*a*c - b^2)) - (b*c*x^(5/2))/(2*a*(4*a*c - 
 b^2)))/(a + b*x^2 + c*x^4) + atan((((((((81*b^8*(-(4*a*c - b^2)^15)^(1/2) 
 - 81*b^23 + 741801984*a^11*b*c^11 - 90126*a^2*b^19*c^2 + 1201623*a^3*b^17 
*c^3 - 10588384*a^4*b^15*c^4 + 64704576*a^5*b^13*c^5 - 279571968*a^6*b^11* 
c^6 + 853174784*a^7*b^9*c^7 - 1799626752*a^8*b^7*c^8 + 2494119936*a^9*b^5* 
c^9 - 2038693888*a^10*b^3*c^10 + 9604*a^4*c^4*(-(4*a*c - b^2)^15)^(1/2) + 
4023*a*b^21*c + 10746*a^2*b^4*c^2*(-(4*a*c - b^2)^15)^(1/2) - 26313*a^3*b^ 
2*c^3*(-(4*a*c - b^2)^15)^(1/2) - 1593*a*b^6*c*(-(4*a*c - b^2)^15)^(1/2))/ 
(8192*(a^7*b^24 + 16777216*a^19*c^12 - 48*a^8*b^22*c + 1056*a^9*b^20*c^2 - 
 14080*a^10*b^18*c^3 + 126720*a^11*b^16*c^4 - 811008*a^12*b^14*c^5 + 37847 
04*a^13*b^12*c^6 - 12976128*a^14*b^10*c^7 + 32440320*a^15*b^8*c^8 - 576716 
80*a^16*b^6*c^9 + 69206016*a^17*b^4*c^10 - 50331648*a^18*b^2*c^11)))^(1/4) 
*(285212672*a^11*b*c^11 - 12288*a^4*b^15*c^4 + 364544*a^5*b^13*c^5 - 46202 
88*a^6*b^11*c^6 + 32440320*a^7*b^9*c^7 - 136314880*a^8*b^7*c^8 + 342884352 
*a^9*b^5*c^9 - 478150656*a^10*b^3*c^10))/(2*(a^4*b^8 + 256*a^8*c^4 - 16*a^ 
5*b^6*c + 96*a^6*b^4*c^2 - 256*a^7*b^2*c^3)) - (x^(1/2)*(12683575296*a^11* 
b*c^13 - 36864*a^2*b^19*c^4 + 1413120*a^3*b^17*c^5 - 23891968*a^4*b^15*c^6 
 + 233816064*a^5*b^13*c^7 - 1459421184*a^6*b^11*c^8 + 6023806976*a^7*b^9*c 
^9 - 16436428800*a^8*b^7*c^10 + 28575793152*a^9*b^5*c^11 - 28705816576*a^1 
0*b^3*c^12))/(16*(a^4*b^12 + 4096*a^10*c^6 - 24*a^5*b^10*c + 240*a^6*b^...